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“The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' (I 
found it!) but 'That's funny ...' “ 

Isaac Asimov (Science fiction novelist & scholar: 1920 - 1992) 
 

 As the quote above illustrates, there are facets of the scientific process that are prompted by 
feelings of intuition.  Although this notion may seem closer to stereotypes of art than science, the notion 
that scientists can rely upon knowledge that is generated without their awareness has an empirical 
foundation in the literature on implicit learning (e.g. Reber, 1989; Lewicki, Czyzewska, & Hoffman, 1987; 
Mathews, et al., 1989).  So, although the subjective experience of intuition may seem “magical,” 
researchers have begun to characterize the characteristics of such knowledge.  One major theme of this 
chapter will be that implicit knowledge (knowledge gained directly from experience) and explicit 
knowledge (e.g. the explicit facts that are typically acquired in science instruction) may be fruitfully 
combined (and clearly are in mature scientists).  To use the example above, the intuition that alerts one to 
the detection of an anomaly (e.g., “That’s funny”) is likely to spur a more explicit reasoning process that 
involves trying to locate the source of the anomaly and understand its implications. 
 Most educational settings focus on teaching conceptual (explicit) knowledge rather than setting 
up an opportunity for gaining substantial experiential (mostly implicit) knowledge.  While this may be 
appropriate for some subject areas, other subjects areas may require learning information (e.g., features 
of complex systems or categories) that are better learned (at least initially) through extensive hands-on 
experience than with lectures or textbooks alone (that is, with explicit learning alone). This issue has a 
significant bearing on the question of the role of laboratory research experiences in science education 
(see, for example, the chapter by Taraban et al. in this volume).  In general, lab experiences help to 
promote implicit and/or procedural learning, while classroom lectures and textbooks often promote explicit 
learning of explicit, conceptual knowledge. While emphasizing the importance of explicit knowledge, we 
should not downplay the significance of implicit learning and implicit knowledge in the overall learning 
experience.  For example, to be a scientist is not simply a matter of accumulating a large amount of 
specific and explicit knowledge; it is, more importantly, a matter of developing intuitive (implicit) 
understanding and intuitive (implicit, procedural) skills for approaching and exploring scientific issues and 
for conducting scientific experiments (Sahdra & Thagard 2003).  We believe that a major goal of science 
education (and education more broadly) is to develop skills that involve the ability to access well-
integrated implicit and explicit knowledge in the course of solving problems.  The epitome of such a goal 
is a person who can perform a complex task (e.g., run an experiment, perform surgery, utilize complex 
equipment) and hopefully also be able to describe to others the conceptual facts and “tricks of the trade” 
that guide their performance. Such people are commonly recognized as outstanding teachers and 
collaborators. Viewed in this light, understanding the interaction of implicit and explicit learning becomes a 
critical issue. 
 Given the focus of this volume, the goal of this chapter is to provide a theoretical and empirical 
overview of implicit and explicit learning processes (focusing on how they interact) and to draw out 
implications of research in this area for science teaching.   To do so, we begin by articulating the 
characteristics of implicit and explicit learning.   Next, we focus on how implicit and explicit learning can 
interact by first describing a computational theory/model (namely CLARION; see Sun, 2002; 2003) of 
human cognitive processes.   Further, we describe the results of several research studies that illustrate 



the potential interactions between implicit and explicit learning along with computer simulations of the 
data demonstrating the power and utility of the CLARION theory/model.  Finally, we conclude the chapter 
by discussing what the results of this research have to say about how implicit and explicit learning can 
successfully be combined in the science classroom. 

 
I. Implicit and Explicit Learning 
 
 Substantial research (e.g., Berry & Dienes, 1993; Kolers & Roediger, 1984; Lewicki, 1986; 
Mathews, et al., 1989; Reber, 1993; Sun 2002; Sun, Slusarz, and Terry, 2005) has documented two 
different and complementary types of cognitive processes (and subsequent representations) that are 
involved in the acquisition of cognitive skills.   These two processes, implicit and explicit learning, differ on 
a number of characteristics that are highlighted in Table 1.  Implicit knowledge is acquired relatively 
directly from the environment and requires substantially less mental effort during the learning process 
than explicit learning.  For example, you might learn geographic information about an area simply by 
driving to a different city even without having an intention to learn.  Learning that same information by 
consulting a map would be more effortful and you would likely be consciously aware of trying to commit 
the information to memory.   Despite its relatively effortless manner, one common misconception about 
implicit learning is that it does not require attention to the subject matter.   Participants in studies of 
implicit learning are attending to a task; they are just not deliberately trying to acquire certain aspects of 
the task stimuli (e.g., its underlying structure) that are the focus of later testing.  Using our example of the 
driver learning geography, the driver (hopefully) is attending to the task of driving safely even though he 
or she is not intentionally trying to remember the landscape.   Another important aspect of implicit learning 
is that it is relatively more error tolerant than explicit learning (e.g., Sallas, et al., 2006).  By this we mean 
that implicit learning is more sensitive to the variability of stimuli (e.g., among members of a category) in 
the real world and is more useful for detecting less salient features of the environment.  Explicit learning is 
less tolerant of error or noise because people typically try to form simple hypotheses that explain a 
particular phenomenon.  When the phenomenon is fairly stable and the relations between variables fairly 
obvious, simple hypothesis testing can be fairly accurate but hypothesis testing is less effective when 
relations are made less salient by noise.  By noise, we are talking about the natural variation of 
phenomenon in the world such as the subtle differences between members of a species or how the 
motion of a tennis ball off a racket might be slightly different due to subtle differences from one moment to 
the next (e.g., wind speed, fatigue). 
 
Table 1.   Characteristics of implicit and explicit learning. 
 

 
 
 The knowledge that results from implicit and explicit learning also differs in a number of important 
ways.   One well-known difference is that explicit knowledge is much easier to verbalize than implicit 
knowledge (while verbalizing implicit knowledge may be impossible without “explicitation” first).  For 
example, it is quite easy to talk about the names for the bones in the human hand that you just 
memorized for your anatomy class, but it is likely quite difficult for you to explain the specific movements 
you just used to pick up your coffee cup.   Consequently, explicit knowledge plays a major role in the 
ability to communicate to others what is known.  In a related way, implicit knowledge is much more likely 

Characteristics Implicit Learning Explicit Learning 
Effort Easy Hard 
Learning Unaware Aware 
Robustness Error tolerant Error intolerant 
Knowledge Difficult-to-Verbalize Easy-to-Verbalize 
Type of Cognition  Hot (emotional) Cool  
Speed Fast Slow 
Control Cue-driven (unconscious) Conscious  
Solutions Heuristic Algorithmic 
Representation Holistic Analytic 



to reveal itself with emotional responses (“hot” cognition) than is explicit knowledge.  For example, the 
feeling you get when you are walking in a dangerous area (“the hair on the back of your neck”) can be an 
implicit response to cues in the environment.   In the context of scientific practice, such affective 
responses can alert a scientist to anomalies before he or she is aware of the source of the response.  
Implicit knowledge can be deployed much faster than explicit knowledge, and is often triggered 
automatically by cues in the environment.   Because of this, implicit knowledge may be particularly good 
at providing quick answers that have worked well in past situations (a heuristic), but are not guaranteed to 
do so in the present moment.  Conversely, explicit knowledge is retrieved much more slowly, typically 
after deliberate effort to do so.  For example, think of your own efforts to remember lecture material when 
trying to answer test questions.  Explicit knowledge can be used to fashion highly accurate, dependable 
and effortful (“algorithmic”) solutions to problems.  Examples of algorithms would include a procedure that 
describes how to compute a function, or a recipe for making gumbo.  Finally, implicit representations are 
generally holistic (e.g., through a general impression or reaction) while explicit representations allow one 
to focus more analytically on individual features.  To use an example from Melcher & Schooler (1996), 
any experienced wine drinker will be able to tell you whether they like a particular wine or not, but only a 
trained wine taster typically has the analytic understanding and vocabulary to tell you which features of 
the wine contribute to whether they like it or not (or which aspects they like and which they do not). 
 
II.  Interaction of Explicit and Implicit Learning  
 
 In the first section we outlined the theoretical qualities of the two systems that guide human 
thinking.  In this section, we present results from three studies demonstrating these qualities and different 
ways in which the two systems can interact.  Sometimes such interactions increase performance as 
compared to either system operating alone.  In other situations activating the explicit system may impair 
implicit learning or have no effect.  It is important to understand these interactions to inform educators on 
best learning practices.  Various experimental manipulations can shift participants’ activity more toward 
one system or the other.  For example, telling participants to reflect or figure out the rules while 
performing a task increases explicit learning processes (e.g., hypothesis testing). 
 We use Ron Sun’s model (cognitive architecture) CLARION (Sun, 2002; 2003) to simulate results 
from each experiment.  This model is a cognitive architecture designed to simulate a wide range of 
human cognitive processes.  One of its most unique features and the one that is most important for 
present purposes, is that it is one of very few computer models that posits the two systems and allows 
them to interact in both directions, what we will refer to as bottom-up learning (implicit knowledge 
becoming explicit) and top-down learning (explicit knowledge affecting implicit learning).  The purpose of 
the simulations is to test the adequacy of our theoretical ideas concerning the interactions of implicit and 
explicit learning.  In most other work on cognitive architectures, the focus has been almost exclusively on 
"top-down" learning (that  is,  learning  first explicit knowledge and then implicit knowledge on the basis of 
the former).  The bottom-up direction (that is, learning first implicit knowledge and then explicit 
knowledge) or learning both in parallel has been largely ignored.  However, there are a few studies that 
do demonstrate the parallel development of the two types of knowledge or the extraction of explicit  
knowledge from implicit knowledge (e.g.,  Rabinowitz & Goldberg, 1995; Karmiloff-Smith, 1986; Stanley et 
al., 1989; Sun, Slusarz & Terry, 2001; Sun, 2002). 

 
 1 .      A General Framework 
 

The role of implicit learning in skill acquisition and the distinction between implicit and explicit 
learning have been widely recognized in recent years (see, e.g., Reber, 1989; Stanley et. al., 1989; 
Willingham et al., 1989; Proctor & Dutta, 1995; Sun, 2002; Sun et al., 2005).  Although implicit learning 
has been actively investigated, the complex and multifaceted interactions between the implicit and the 
explicit and the importance  of  this  interaction  have  not  been  universally  recognized;  to  a large 
extent, such interactions have been downplayed or ignored, with only a few noteworthy exceptions.   
Research has been focused on showing the lack of explicit learning in various learning settings (see 
especially Lewicki et al., 1987) and on the controversies stemming from such claims.  Similar oversight is 
also evident in computational simulation models of implicit learning (with a few exceptions). 
   There is increasing recognition that it is difficult, if not impossible, to find a situation in which only 



one type of learning is engaged (Reber, 1989; Seger, 1994; but see Lewicki et al., 1987).  Our review of 
existing data (see Sun et  al. 2001; 2005) has indicated that, while one can manipulate conditions to 
emphasize one or the other type, in most situations, both types of learning are involved, with varying 
amounts of contributions from each (see, e.g., Sun et  al., 2001, 2005; Stanley et al.,1989; Willingham  et  
al.,1989). 

In the work described below, we will focus on interactions between the two systems and resulting 
effects on performance.  The guiding hypothesis of this work is that the interaction between implicit and 
explicit knowledge is the key to understanding acquisition of  skills.  Further, we believe this work has 
implications for understanding how best to teach the implicit and explicit skills associated with science. 

 
 2.       CLARION: A Computational Theory and an Integrative Model 
 
 We next discuss a computational theory (namely CLARION) of human cognitive processes that 
incorporates both implicit and explicit processes.  We do so because we believe that the best applications 
are those which are informed by theory and theory-driven empirical research. 

Representation.  Implicit knowledge is like pattern matching; we know who it is we are looking 
at, or how to react to a situation, but we are not aware of how we know.  For example, when you 
recognize a friend’s face you probably are not aware of what features are used to identify him—you just 
know it is “George.”  In computational modeling, this relatively inaccessible nature of implicit knowledge 
may be captured by subsymbolic distributed representations provided by a connectionist (i.e., 
“backpropagation”i) network (Rumelhart et al., 1986).  This is because representational units in a 
distributed representation are capable of accomplishing tasks, but are subsymbolic and generally not 
individually meaningful (see Rumelhart et al., 1986; Sun, 1995).  Although it is not true that distributed 
representations are never accessible to conscious awareness, they are definitely less accessible (e.g., 
more difficult to verbalize or tell someone else how to perform the task), than symbolic/localist 
representations.  Distributed representations may only be accessed through indirect, transformational 
processes.  Such processes may be compared to watching your own behavior and discovering how you 
perform a task.  For example, when asked by his young daughter how to balance a bicycle while starting 
off, one of the authors had to get on a bike and perform the task to recognize that turning the front wheel 
was the key.     

In contrast, explicit knowledge may be captured in computational modeling by symbolic or localist 
representations (Clark & Karmiloff-Smith, 1993) in which each unit is easily interpretable and has a clear 
conceptual meaning.  This is similar to memorizing steps in a procedure or recipe (i.e., an algorithm).  
Each step is meaningful and is described to tell another how to do it. This characteristic captures the 
property of explicit knowledge being accessible and manipulable (Sun, 1995).    

This difference in the representations of the two types of knowledge led to a two-level cognitive 
architecture CLARION (which stands for Connectionist Learning with Adaptive Rule Induction ON-line; 
proposed in Sun 1997; 2002), whereby each level using one kind of representation captures one 
corresponding type of process (either implicit or explicit).  Greater detail regarding the theoretical 
arguments for such two-level models can be found in work by Sun (1995; 1997; 2002). 
   

Learning.  Implicit knowledge is tuned to our environment over time through feedback from its 
effects (positive or negative) each time it is employed.  We experience much of this feedback process 
through emotional reactions to our success or failure when trying to accomplish a task.  In computational 
modeling, this continuous learning process (at the bottom level of CLARION) can be captured in a variety 
of ways consistent with the nature of distributed representations.  In learning settings where the correct 
responses are not explicitly provided, reinforcement learning (Watkins,  1989, especially Q-learning) can 
be implemented using backpropagation networks. Such learning methods are theoretically and 
empirically justified:  For example, Shanks (1993) showed that human instrumental conditioning (a simple 
type of skill learning) was best captured by associative models (i.e., connectionist networks) when 
compared with a variety of rule-based models.  Further, Cleeremans (1997) has argued that implicit 
learning could not be captured by models using only symbolic representations. 

Whereas implicit learning is a gradual, continuous process, explicit learning can occur on one trial 
(at the top level of CLARION).  For example, if I tell you that you must stop at a red light, a new driver can 
immediately adopt this behavior without a need for continuous feedback.  Explicit learning (at the top 
level) can also be modeled in a variety of ways using symbolic/localist representations.  While complex 



mental models can and are adapted over time, CLARION uses one-trial learning to create top-level 
explicit rules.  Such rules may be forgotten or discarded over time, but rule creation is thought to be a 
one-time process (the rule is either present or not, see Nosofsky, Palmeri, & McKinley, 1994; Sun, 1997).   
For example, if you tell a class that “all living things interact with their environment”, we can assume that 
for many students (those paying attention) this new rule is now explicitly encoded in their memories and it 
is available to be used perhaps to distinguish between living and non-living things.  Of course, this is not 
to say it was represented in every student’s head (we wish!) or that it will be remembered when needed.  
Nonetheless, with such learning, individuals explore the world, and dynamically acquire explicit 
representations and modify them as needed, reflecting the dynamic (on-going) nature of skill learning 
(Sun, 1997; Sun et al., 2001).   

The implicit knowledge already acquired in the bottom level can be utilized in learning explicit 
knowledge (through so called “bottom-up learning”; Sun et al., 2001).   This is accomplished in CLARION 
by having the top level examine a positive outcome from using implicit knowledge and generating a rule 
that encompasses the current context and the implicitly controlled response.   Such bottom-up learning is 
also likely to happen following failure of explicit (top level) rules.  When this occurs the explicit rule is 
rejected (deleted) and a new rule is created through CLARION “observing” its own implicitly controlled 
behavior (e.g., Dienes & Fahey, 1995; Nosofsky et al., 1994).  This rejection of failed rules occurs in 
CLARION when a measure of a rule’s performance falls below the deletion threshold and the rule is 
deleted.   

Whenever all the rules of a certain  form  are  deleted,  a  new  set  of  rules  of  a  different  form  
are  hypothesized, and the cycle repeats itself.  In hypothesizing rules, CLARION progresses from the 
simplest rule form to the most complex (just as humans have been shown to do; Berry & Broadbent, 
1988; Stanley et al., 1989).  

 As in real life, CLARION often faces situations where the two systems suggest different actions.  
Should I go with my gut (implicit) feelings or my head (my explicit plan)?  CLARION makes this decision 
probabilistically based on a weighting parameter which biases the system toward using the bottom 
(implicit) or top level (explicit) in a given situation.  This weighting parameter is one of the primary 
variables we changed to simulate different task instruction effects in the following experimental 
simulations.  A second parameter, the rule threshold parameter is also changed to simulate increased 
activity in generating rules at the top level.  All other parameters are fixed based on a long standing 
attempt to build a computer architecture complex enough to resemble the human mind in some way (for 
further details see Sun, 2002; 2003). 
 
III Human Experiments and Model Simulations 
 
 One paradigm we have used to examine interactions between implicit and explicit learning 
involves learning an artificial language (Reber ,1989).  These experiments typically involve seeing many 
exemplars of letter strings that are created by a set of rules (an artificial grammar).  Just like learning a 
real language, this paradigm offers the opportunity to study the effects of experiencing exemplars (mostly 
implicit knowledge) and teaching (or self-induction) of the rules of the grammar (i.e., its underlying 
structure). The basic elements of this task resemble, for example, situations where students learn 
categories from exposure to exemplars of the category (e.g., when they learn about the category 
“crawfish” by seeing different specimens).   
 
 1. Task Description of Artificial Grammar Experiment  

 
The data reported here come from a published study by Domangue, Mathews, Sun, Roussel and 

Guidry (2004). The finite-state grammar used by Mathews et al. (1989) was used in this experiment (see 
Panel B of Figure 1). This grammar generates 177 exemplars (“words”) ranging in length from 5 to 11 
letters. There were two 1-hour sessions conducted one week apart. Each session began with a 20-minute 
training phase requiring participants to perform a training task, followed by a 20-minute cued-generate 
test. One hundred twenty undergraduate students participated in the experiment. 

Participants in the EP (implicit) training groups were instructed to copy as many of the 88 
instances (exemplars) as possible into the response sheets (top of Figure 1) in 20 minutes. Each letter of 
each exemplar was to be copied into the appropriate circle on the sheet.  Thus these participants 



experienced many exemplars without a need or time to reflect on the grammar rules. 
The GR (explicit) training condition required participants to observe a copy of the artificial 

grammar (Panel B of Figure 1) for 2 ½ minutes then turn the diagram over. For another 2 ½ minutes 
participants reproduced the artificial grammar diagram from memory by drawing it on a blank sheet of 
paper. This was repeated four times for a total of 20 minutes training time. The goal of the GR task was to 
teach an explicit representation of the grammar without showing many valid letter strings that could 
stimulate implicit learning.  However, it was essential that participants understood how to use the diagram 
to generate strings. Therefore, prior to the first session, three test cues were used to demonstrate how to 
generate strings using the diagram.  

Participants in the ED (exemplar diagramming) groups were instructed to trace as many of the 88 
exemplars through the diagrams (bottom of Figure 1) on their response sheets as possible in 20 minutes. 
They were instructed to copy each letter of each exemplar into the corresponding transition box until the 
exemplar was completed.  The rationale for this task was to have participants process exemplars within 
the context of the grammatical structure.  Thus this task provided integrated training both in the structure 
of the grammar and in seeing exemplars generated by the grammar. 

 
Figure 1 
 
During the test phase, participants were provided with a set of blanks with two letters (cues) filled 

in. Their job was to fill in missing letters in a string (a cued generation task). If the letter string generated 
by the participant did not match at least 70% of the letters of the closest not-yet-generated instance, all 
non-matching letters were erased from the screen and the participant had to try again. This process was 
continued until at least 70% of the letters typed by the participant matched an instance. When the 70% 
criterion was achieved, the computer retrieved and displayed the closest not-yet-generated instance. 

It was predicted that participants having only the purely implicit (EP) training would generate 
strings the fastest, using only fast implicit processes. It was expected that the purely explicitly (GR) 



trained group would be the most accurate, but the slowest, using only explicit knowledge. The integrated 
(ED) training was expected to fall in between the two pure groups, employing some fast implicit 
processes combined with slower explicit knowledge.   

 
 2. Results of Human Experiment 
 
  Performance measures for both sessions are provided in Figure 2.  Figure 2 illustrates the 
performance of various training tasks on three dependent measures.  

 The following measures were used: (1) Achievement is measured in terms of the number of 
acceptable strings (matching at least 70% of the letters of an instance) generated per minute during the 
test phase.  (2) Accuracy is a measure of the proportion of attempts that generate perfect letter strings. 
(3) Speed of responding was measured in terms of number of attempts per minute during the test phase.  
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Figure 2.  Results of Artificial Grammar Experiment 
 
 Recall that the goal of the test was to complete as many strings as possible by getting close 
(70%) to a valid string.  Success in this goal is measured by achievement.  Note that purely implicit 
training resulted in the best achievement of this goal by the end of session two.  This training also led to 
the fastest performance (see speed in Figure 3).  This shows that purely implicit training can be very 
effective when speed is needed, but a high level of accuracy is not.   
 Strictly explicit training (GR) led to the highest accuracy and the slowest responding on the cued-
generate test.  The integrated training was in between, having higher accuracy and lower speed than EP, 
and lower accuracy but higher speed compared to GR.  Unfortunately, the integrated training did not lead 
to the best of both worlds—both high speed and accuracy.  However, as will be mentioned in the 
discussion, we have since found a way to do just that! 
 
 3. Simulation Using CLARION 
 

We simulated the above human data with CLARION (Sun et al., 2001, 2005; Sun, 2002). As 
mentioned before, the model (the cognitive architecture) consists of two levels: the top level encodes 
explicit knowledge and the bottom level encodes implicit knowledge. Experienced strings (as presented to 
participants or sampled from presented grammar diagrams) are used to train an associative memory 
made up of a backpropagation network. The network maps input to output; in this particular case, it maps 
some partial strings (each of which is a part of an experienced string) to the full experienced string. This 
associative mapping allows implicit grammatical knowledge to develop.ii 

At the top level , experienced strings are encoded as rules. For example, if a string ``S C P V" is 
experienced, the following three rules may be encoded there: S->C, C->P, P->V.   

The outcome from the model can be either from the bottom level or from the top level. However, 
the bottom-level implicit processes are significantly faster than the top-level explicit processes (see 
Schneider & Oliver, 1991; Sun & Zhang, 2004). In CLARION, response time is determined by parameters 
that specify the time lag of each step of associative memory retrieval at the bottom level, and the time lag 
of each step of rule application at the top level. 

For the explicit (GR, GR) group, the top level is mainly responsible for generating the outcome 
during test. This is because the system was configured in such a way that mainly the top level is used, 
due to the fact that this experimental setting encourages an explicit mode because of the presentation of 
grammar diagrams to participants during training. (The top vs. bottom weighting parameter was set during 
training in a way that supports this configuration.) During test, the top level uses learned rules to attempt 



to complete each given partial string. That is, given the test cue, it searches for a possible completion 
guided by the rules at the top level, using depth-first search (with backtracking). For example, given a 
partial string ``S _ _ V", the search has to go through all the rules in the form of S->x, or in the form of x-
>V, where x can be any letter, and many other similar rules (e.g., concerning the relation between the 
second and third letters). This search process is slow, but the outcome from the top level is rather 
accurate. iii 

For the implicit (EP, EP) group, during test, the bottom level is responsible for generating the 
outcome. This is because the system is configured in such a way that mainly the bottom level is used, 
due to the fact that this experimental setting during training encourages an implicit mode by repeatedly 
presenting training instances (Sun, 2002). (The top vs bottom weighting parameter was set during training 
in a way that supports this configuration.) During training, the bottom level uses an associative memory 
(in the form of a backpropagation network) to map a partial string to a full string that is a likely completion 
of the partial string. This way of capturing implicit learning during training is appropriate, considering the 
fact that participants in this task marked experienced strings on a bubble sheet, which naturally led to 
multiple partial strings. The bottom level is, generally speaking, less accurate but much faster.  

For the integrated training (ED,ED) group, a combination of the two levels was used, because the 
experimental settings involve both implicit training and explicit training, due to the use of both repeated 
presentation of strings and the presentation (and tracing) of the grammar diagram. During test, the 
combination process of the two levels proceeds this way: The bottom level generates candidate 
completions of partial test strings; then the top level checks each of these strings using the rules already 
learned at the top level. The check by top-level rules is carried out through straightforward applications of 
relevant rules, without any backtracking. For example, if ``S C P V" was suggested by the bottom level, at 
most three rules may be applied: S->C, C->P, P->V, if these rules do exist at the top level. ivIn this case, 
although the bottom level works at a fast pace, the top level is slower. But because there is no full-blown 
depth-first search with backtracking, the top level is not as slow as in the case of the explicit (GR, GR) 
group. However, due to multiple applications of rules it is slower than the bottom-level implicit processes 
alone. So, the final outcome is, on average, at a speed somewhere between the implicit group and the 
explicit group. 

The purpose of the simulation was to see if a model using dual representational structures could 
capture and explain the key features of the data.  No attempt was made to fine tune the fit of the model by 
varying parameters, because at this stage we are only interested in the overall features of the data. 

The key feature we were trying to capture in the simulation was that exposure to a diagram of the 
grammar either through grammar replication (GR) or exemplar diagramming (ED) would enhance 
accuracy and efficiency but such exposure would reduce speed. In addition, a high level of achievement 
could be accomplished through implicit processing (EP,EP) alone, without exposure to a diagram of the 
grammar. The simulation results are shown in Figure 4.   Let us examine the data from the test phase of 
session 2 below. 
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Figure 4.  Artificial grammar learning simulation illustrates the performance of the CLARION model 

capturing the human data. 
 

The simulation results for the accuracy data (from the test phase of session 2) are quite similar to 
the human data. In session 2, the two highest groups in both the simulation and the human data were 
those exposed to a diagram of the grammar. (However, in the human accuracy data, the grammar 
replication (GR,GR) group was far superior to all other groups, while in the simulation it was slightly 
better.) 

However, exposure to the diagram also reduced the speed of string generation. In both the 
human and the simulation data, the group only exposed to implicit training (EP,EP) were the fastest 
during session 2.  Finally, the implicit only group (EP,EP) had the highest level of achievement in both the 
simulation and the human data during session 2. 

Looking at the accuracy and the speed data (the two contrasting measures), during session 2, it 
is clear that the integrated training group (ED,ED) was somewhere between the implicit group (EP,EP) 
and the explicit group (GR,GR), in both the human data and the simulation data. This is an important 
match between the human and simulation data, validating our earlier prediction concerning the effect of 
integrated training. 

Thus, the simulation results support the notion that a dual representational model can account for 
these data. Our simulation using CLARION has produced some interesting interpretations (explanation) 
of the human data. These interpretations are embodied in our simulation setups as described earlier. 



They described a plausible mechanistic underpinning of human performance in this task based on the 
implicit-explicit interaction. In particular, they provide an explanation of why the integrated training group 
performed the way it did. 

 
 4.       The Effect of Hints and Reflection on Learning a Process Control Task 

 
Another paradigm often used to study implicit learning is the process control task (e.g., Berry and 

Broadbent, 1988).  In this type of task, an input variable is changed over trials by learners trying to keep 
an output variable at a specific level.  In this section we present and then simulate the results of one such 
well known study by Berry and Broadbent (1988).  As will be seen, the results of this study suggest that 
simultaneous use of implicit and explicit processes can be useful in learning an “implicit” task.  However, 
when the task becomes more difficult, reflection is actually harmful to learning. 

The Task.  Subjects interacted with a computer simulated "person" whose behavior ranged in 
twelve levels of affection going from "very rude" (level 1) to "loving" (level 12) and the task was to 
maintain the behavior at "very friendly" (level 6) by controlling his/her own behavior (which could also 
range in the same 12 levels, from "very rude" to "loving").  Letting “P” stand for the level of the computers 
response on the next trial and “W” the learner’s response on a given trial, In the salient version of the 
task, the behavior of the computer "person" was determined by the immediately preceding input of the 
subject (W).  In the nonsalient version output was determined by the input made two trials ago (denoted 
as W1, instead of the current input W).  In addition, random variation (i.e., noise, denoted as N) was 
added to both equations determining the response (output) of the computer "person" so that there was a 
chance of being up or down one level (a 33% chance respectively).  So in the salient version the equation 
relating inputs and outputs was P  = W - 2 + N.  In the non-salient version, it was P  = W1 - 2 + N.  Four 
groups of subjects were used:  salient experimental, salient control, non-salient experimental, and non-
salient control.   The experimental groups were given explicit rule search instructions after the first set of 
20 trials,  and  after  the second set of 20 trials were given explicit how-to instructions in the form of 
indicating the  relevant  input  that  determined  the  computer  responses  (W  or  W1).   The control 
subjects were just told to try to keep the computer’s response at a friendly level (level 6).   
 The Data.  The exact target value plus/minus one level (that is, "friendly", "very friendly", or 
"affectionate") was considered “on target.”  The average number of trials on target was recorded for each  
subject for each set of 20 trials. 
 Figure 5 shows the data for the four groups of subjects for the three sets of trials.  Analysis 
showed that on the first set, neither of the two experimental groups differed significantly from their 
respective control groups.  However, on the second set, the salient experimental group scored 
significantly higher than the salient control group (p < 0.01), but the non-salient experimental group 
scored significantly lower than the non-salient control group (p < 0.05).  On the third set, both 
experimental groups scored significantly higher than their respective control groups (p < 0.01).   The 
results clearly showed  (1) a benefit of explicit rule search in the salient condition and a negative effect of 
rule search in the non-salient condition; (2) Providing a hint about how inputs were related to outputs in 
the final set of trials for the experimental groups facilitated performance in both the salient and non-salient 
conditions.  Finally there was a main effect of salience in the second set of trial, as both salient groups 
performed better than both non-salient groups. 
 



 
Figure 5:  The data of Berry and Broadbent (1988).   
 
 The Model Setup.   To capture in CLARION the explicit rule search condition (during the second  
training  set), the rule generation threshold in CLARION (as mentioned before) was raised to cause more 
activity (rule generation) at the top level.  To capture the explicit hint condition in the third session, only 
rules that related the given critical variable were generated in the third session for the experimental 
groups. 
 

The Match.  The results of the CLARION simulation are shown in Figure 2.  The data 
demonstrated clearly the explicit how-to instruction effect (improving performance in all conditions), and 
showed to some extent the explicit search effect (improving performance in the salient condition and 
worsening performance in the non-salient condition), as well as the salience difference effect along with 
the explicit search effect.  The data showed the extent and the limit of synergy (in that the non-salient 
condition discouraged synergy). 
 
 

 



 
Figure 2:  The simulation of Berry and Broadbent (1988). 

 
 5.       Synergy in a Process Control Task 
 
 In the Berry and Broadbent (1988) study, there was evidence that providing hints was effective in 
both the salient and non-salient tasks.  Before considering implications for teaching science, we present 
one more study (Stanley, et al., 1989).  However, as will be seen, the critical result from this study is that 
explicit learning processes can enhance learning of a difficult implicit task if explicit information is 
provided (in the form of a hint) or people reflect on their performance after having experience with the 
task (delayed reflection). 

The Task.   Two versions of the process control task were used in Stanley et al. (1989).  In the  
"person"  version,  subjects  were  to  interact  with  a  computer simulated "person" whose behavior 
ranged from "very rude" to "loving" (over a total of 12 levels) and the task was to maintain the behavior at 
"very friendly" by controlling his/her own behavior (which could also range over the 12 levels, from "very 
rude" to "loving").  In the sugar production factory version, subjects were to interact with a simulated 
factory to maintain a particular production level (out of a total of 12 possible production levels) by 
adjusting the size of the workforce (which has 12 levels).  In either case, the behavior of the simulated 
system was determined by this equation P  = 2 * W - P1  + N, where P was the current system output, P1  
was the previous system output, W was the subjects' input to the system, and N  was noise.  Noise (N) 
was added to the output of the system, so that there was a chance of being up or down one level (a 33% 
chance respectively).  Beside the noise, this task is difficult because increasing workers does not always 
lead to increased output (it depends on the current level of output (P1).  Thus, the system often behaves 
in counter-intuitive ways. 

There were four groups of subjects.  The control group was not given any explicit how-to 
instruction and not asked to verbalize.  The "original" group was required to verbalize: Participants were 
asked to verbalize after each block of 10 trials.  Other groups of participants were given explicit 
instructions in various forms, for example, "memory training", in which a series of 12 correct input/output 
pairs was presented to participants, or "simple rules", in which a simple heuristic rule ("always select the 
response level half-way between the current production level and the target level") was given to 
participants.   All the participants were trained for 200 trials (20 blocks of 10 trials). 

The Data.  The exact target value plus/minus one level (that is, "friendly", "very friendly", or 
"affectionate") was considered on target.  The mean scores (numbers of on-target responses) per trial 
block for all groups were calculated. Analysis showed the delayed verbalization effect:  The score for the 
“original” group was significantly higher than the control group (F (1, 73) = 5.20; p < 0.05).  Analysis also 
showed the explicit hint effect:  The scores for the memory training group and for the simple rule group 
were also significantly higher than the control group.  See Table 2. 

 
Table 2:  The human data for the process control task from Stanley et al (1989). 
 
 Human Data  
 Sugar Task Person Task 
Control 1.97 2.85 
Original (Delayed Reflection) 2.57 3.75 
Memory Training 4.63 5.33 
Simple Rule 5.91 4.00 
 
 

The Model Setup.  To capture in CLARION the delayed verbalization condition, the rule creation 
threshold in CLARION was increased in the verbalization groups (the “original” group), implying that 
verbalization leads to increased rule generation at the top level.   To capture the explicit instruction 
conditions, in the "memory training" condition, each of the 12 examples  given to participants was 
represented as rules in the  top level of CLARION; in the "simple rule" condition, the simple rule (as 
described earlier) was represented at the top level of CLARION.    

The Match.  Our simulation captured the delayed verbalization effect in the human data well (for 



further details, see Sun et al., 2005).  Compare Tables 2 and 3.   We used a t-test to compare the 
"original" group with the control group in the model data, which showed a significant improvement of the 
original group over the control group (p < .01), the same as in the human data. 
 
Table 3:  The model data for the process control task from Stanley et al (1989). 
 
 Model Data  
 Sugar Task Person Task 
Control 2.276 2.610 
Original (Delayed Reflection) 2.952 4.187 
Memory Training 4.089 5.425 
Simple Rule 4.073 5.073 
 

Our simulation also captured the explicit instruction effect, as shown in Table 2.   We used pair-
wise t-tests to compare the "memory training" and "simple rule" groups with the control group in the model 
data and found significant improvements of these two groups over the control group (p < .01, 
respectively), the same as in the human data. 

Both effects point to the positive role of the top level of the model. When the top level is 
enhanced, either through delayed verbalization or through externally provided hints, performance is 
improved, although such improvement is not universal (e.g., see Sun et al., 2001).  In a sense, both 
findings demonstrate synergy between top-level explicit processes and bottom-level implicit processes. 
 
 6.       Summary and Discussion 
 

We would summarize the results of the presented empirical results in the following way.  First, the 
artificial grammar study (Domangue, et al., 2004) demonstrated that implicit learning strategies often lead 
to fast, but relatively inaccurate performance, while explicit learning strategies often lead to highly 
accurate, but slower performance.  This study also illustrated that attempting to combine these two types 
of strategies sometimes leads to compromised performance.  Second, the Berry and Broadbent (1988) 
study illustrates that reflection (i.e., thinking about the possible rules underlying the task) while learning 
the task is only helpful if the task is very easy and straightforward (otherwise, it can impair performance).  
The study also illustrated the potential utility of hints to implicit learning.  Finally, the Stanley et al. (1989) 
study illustrates that reflecting on task rules can sometimes be helpful when the reflection is done after 
substantial experiential learning (i.e., when one does not attempt to simultaneously learn the task and 
reflect on the rules).  The study also demonstrated that task hints (explicit information) can improve 
learning if the information directs attention to important task features or strategies. 

Note that although implicit learning is a controversial topic, the existence of implicit processes in 
skill learning is not in question.  What is in question is their extent and importance.  CLARION allows for 
the possibility that both types of processes and both types of knowledge coexist and interact with each 
other to shape learning and performance, so it goes beyond the controversies and the studies that 
focused mostly on the minute details of implicit learning.  
 The work reported thus far highlights the importance of the interaction of implicit and explicit 
processes in skill learning. It captures the interaction through a model (a cognitive architecture) that 
includes both types of processes.   This model reveals something new in the existing data (cf. Gibson et 
al.,1997; Lebiere, Wallach, & Taatgen, 1998):  The contribution of this model lies in interpreting human 
data in skill learning through the interaction of the two types of processes, and also in demonstrating the 
computational feasibility and psychological plausibility of bottom-up learning (Sun et al., 2001).  Note that 
many other simulations using CLARION have similarly shown the interaction between implicit and explicit 
knowledge during skill learning (see Sun, 2002 for details). 
 Although theoretical and empirical rigor as demonstrated above is critical to our understanding of 
the processes underlying skill learning, ultimately the goal of many of our readers concerns the utility of 
this information.  In the next section, we attempt to distill the results of research in this area for science 
education. 

 
IV Applications to science education 



 
 In this section, we will note the implications of CLARION as well as the related vast literature on 
explicit and implicit learning for the teaching of science.  To do so, we first contrast the characteristics of 
implicit and explicit learning, noting how these characteristics might bear on science education.  However, 
implicit and explicit learning are hardly ever found in “pure” form in real-world tasks (Mathews, et al., 
1989, Sun 2002) and, more importantly, the ultimate goal of science education is to produce students 
who can use both implicit and explicit knowledge to solve problems they encounter.  Thus, we also 
discuss how explicit and implicit learning processes interact, and highlight the fact that this interaction can 
sometimes interfere and sometimes enhance knowledge and skill acquisition.  Finally, we will focus on 
some suggestions regarding how science instruction might be structured to increase the likelihood that 
students will emerge with rich implicit and explicit knowledge (Sahdra and Thagard 2003).  
 As discussed earlier in the chapter, one strength of implicit learning is that it is more error tolerant 
than explicit learning (e.g., Lane, Mathews, Sallas & Sun, 2006).    More generally, we mean that implicit 
learning is more likely to represent the natural variability of a category than explicit learning (which 
involves constructing potential rules).  For example, one common task in a biology course is to identify 
the genus and species of a given organism.  When learning this task, students typically see a variety of 
related organisms that differ, subtly and not-so-subtly, from each other.   In most natural categories, the 
presence or absence of a single feature does not discriminate between related category members but 
rather they share a “family resemblance” (i.e., they share a number of characteristic features).   However, 
explicit learning often focuses on trying to identify simple rules (e.g., If specimen contains X, then it is a 
Y).  Implicit learning processes are more likely to lead to a representation that contains the variability 
within the category.  Thus, it is clear that experience with the members of the category under study can 
provide important information that is of considerable use during the task of identification.  After all, it is 
entirely possible for students to confidently state rules they learned in class without being able to apply 
them (e.g., using that knowledge to identify a target organism).   However, one common misconception 
about the use of implicit learning processes in the classroom is that it involves no direction on the part of 
the teacher (i.e., it simply comes from experience).   An important thing to keep in mind is that implicit 
learning is exquisitely tuned to the examples to which it is exposed.  The more varied and representative 
the examples are for the category being learned, the more robust the ultimate representation of that 
knowledge.  Thus, one implication for science teaching is that the type of examples to which students are 
exposed will impact the knowledge gained from experience.   For example, it is important to not only 
expose students to typical members of a category, but also less typical members as well as members of 
other categories that are commonly mistaken as being from the target category.   
 Choosing good, representative examples in science teaching is also important for another 
reason.  It has often been claimed that the representations created by explicit learning are more flexible 
than those which result from implicit learning (e.g., Dienes & Berry, 1997).    More generally, the claim is 
that explicit learning leads to knowledge that transfers more easily to new situations than implicit learning.  
Given that transfer is one of the major goals of education, this might be worrisome to those wishing to 
integrate more experiential aspects of learning into their science instruction.  However, there are several 
reasons to call this claim into question.  First, people are not particularly good at transferring explicitly 
learned information to new situations (e.g., Gick & Holyoak, 1980).  Second, research on implicit learning 
has found evidence that the knowledge acquired with one set of task constraints can be applied to a task 
with new constraints (e.g., Mathews et. al., 1989).  In other words, implicit learning can lead to transfer.  
Finally, note again that implicit knowledge is tuned to the range of experience to which it is exposed.  To 
the extent a student might see only a small, limited range of examples, one might expect that his or her 
knowledge of the category would be limited as well. 

 Although implicit knowledge is an important and often neglected aspect of the learning process, 
ultimately science practice involves the integration of both implicit and explicit knowledge (Sahdra and 
Thagard 2003).  For example, we have argued that pattern matching (a central feature of implicit 
knowledge) is important in nearly every area of science.  Biologists are able to recognize organisms at 
scales ranging from viruses to large mammals.  Astronomers distinguish between various types of 
celestial phenomena. Radiologists are required to make subtle distinctions when viewing visual images.  
Although each of these examples clearly demonstrate the essential nature of perceptual skill in scientific 
pursuits, this type of implicit knowledge alone is not enough.   Instead, explicit knowledge and reasoning 
processes must also be brought to bear.  For instance, one important aspect of science practice is the 
ability to detect anomalies (e.g., Popper, 1972); the feeling that some piece of data “does not fit.”   



Although the initial feeling may be the output of an implicit process, it typically triggers an explicit process 
of attempting to understand the anomaly (e.g., “Perhaps this is a new strain of bacteria.”).   In addition, 
the ability to communicate what one knows (explicit knowledge) is central to the scientific enterprise for a 
multitude of reasons including the issues of replicability (e.g., conveying procedures), the practice of peer 
review and mutual critiquing, and the increasingly social nature of scientific work (e.g., groups of 
scientists planning, running and interpreting the results of experiments).   Thus, one cannot become a 
scientist or even an educated student of science without being able to deploy both implicit and explicit 
scientific knowledge in an integrated way. 
 Research has revealed that integration between implicit and explicit knowledge does not always 
happen automatically.  For example, a study of “naïve physics” revealed that even students who 
successfully completed a college-level physics course nevertheless still wrongly predicted the trajectory 
of a ball in a simple task (McCloskey & Kohl, 1983).  Readers who are science teachers will similarly 
recognize the lack of integration either in those students who are able to perform procedures without 
being able to articulate the rationale or in those who are able to articulate concepts on an exam but are 
unable to use those concepts in a laboratory task.   Further, attempts to integrate implicit and explicit 
learning at the same time have sometimes been harmful or ineffective (e.g., Lane, et al., 2006; Roussel, 
1999) and sometimes helpful (e.g., Sun, Merrill, and Peterson, 2001; Sallas, Mathews, Lane, & Sun, 
2006).  Although there is still much to be learned about how to maximize the integration, there are 
nevertheless a number of  lessons to be learned from past research that are applicable to science 
instruction.   
 One common way of attempting to integrate explicit and implicit knowledge is to have people 
reflect on their understanding during the process of learning a task.   In order to understand the impact of 
reflection, it is important to keep in mind that its effects can differ based on the type of knowledge to be 
acquired, the nature of the task, and the timing within the knowledge acquisition process (i.e., how far 
along in the learning process) when it is engaged.   For example, reflecting (e.g., self-explanations) while 
reading a text describing the circulatory system is effective in increasing comprehension and repairing 
misconceptions (e.g., Chi, 2000; Chi, de Leeuw, Chiu, & LaVancher, 1994).   In this case, the material is 
largely conceptual and declarative in nature, and reflection is clearly beneficial.  However, there are a 
number of circumstances, where it can be harmful. For example, verbalizing one’s thoughts about 
difficult-to-verbalize aspects of one’s knowledge can impair performance (i.e., the verbal overshadowing 
effect, Schooler & Engstler-Schooler, 1990; Schooler, 2002).  Indeed, verbalization has been 
demonstrated to impair insight problem solving (Schooler, Ohlsson, & Brooks, 1993), analogy retrieval 
(Lane & Schooler, 2004), and memory for faces (see Meissner & Brigham, 2001 for a meta-analysis).  
Similarly, our own research has found that attempting to reflect on one’s understanding during the 
process of learning tasks that contain non-salient or complex rules can sometimes harm knowledge 
acquisition (e.g., Lane, et al., 2006; Roussel, 1999; see also, Berry & Broadbent, 1988).   The timing of 
reflection also appears to be critical.   For example, in contrast to concurrent reflection, reflection that is 
delayed to the end of a block of trials does not appear to impair learning (e.g., Roussel, 1999).   Further, 
the level and type of knowledge attained at a particular point in time can also have an impact. The verbal 
overshadowing literature (e.g., Melcher & Schooler, 1996) suggests that reflection may be less harmful 
when people already have both verbal and non-verbal (mostly implicit) knowledge of a domain than it is 
for people who have only non-verbal knowledge. CLARION has been used to explain these phenomena 
(Sun, 2002; Sun et al., 2005) 
 Although work in this area is continuing within the framework of CLARION, research suggests a 
number of important considerations for teachers.   First, not surprisingly, when attempting to teach 
conceptual (explicit) aspects of an area, reflecting while learning may aid the acquisition of this 
knowledge. Second, having students reflect when first learning tasks that are largely perceptual (e.g., 
learning to categorize samples) or involving difficult-to-verbalize stimuli is likely to impair knowledge 
acquisition.  However, if reflection is utilized in these situations, it should be used sparingly and non-
concurrently (e.g., during breaks between seeing extensive examples).  Our findings suggest the 
possibility that concurrent reflection may tie up working memory resources that are typically utilized during 
the learning process.  Third, the negative effects of reflection appear to be reduced after initial learning 
and may be beneficial after students have begun to develop both implicit and explicit knowledge of a 
domain.  In conclusion, we believe that the existing research suggests, for initially learning relatively 
experiential aspects of a domain, having students concurrently reflect about what they are learning is not 
likely to lead to integration and may actually impair acquisition of that knowledge. Synergy is more likely 



to occur when implicit and explicit knowledge are initially acquired separately and then integrated over 
time.   For example, some studies suggest that learning in these types of tasks might be best facilitated 
by an initial period where students are exposed to good examples of category (mostly implicit learning) 
before they receive more explicit instruction (Domangue, et al. 2004; Mathews, et al., 1989).   In other 
words, rather than attempting to integrate explicit and implicit knowledge by co-activating both types of 
learning processes (using reflection + experiential learning), this suggestion involves a period of implicit 
learning prior to explicit learning. 
  Although the subject of much research, reflection is only one way that explicit knowledge and 
learning processes can be brought to bear on learning difficult experiential tasks. We have  found a 
number of other ways that explicit and implicit learning can lead to synergy.  For example, a number of 
studies have indicated that giving participants explicit hints about successful task completion improves 
performance on an implicit task (Roussel, 1999; Sun & Mathews, 2005) relative to participants who only 
learn the task experientially.   In general, we argue that such hints direct attention to important aspects of 
the task without burdening working memory resources.  Our simulation with CLARION has confirmed this 
(Sun et al., 2005).  In addition, recent work in our laboratory has discovered a way that explicit knowledge 
can be introduced in ways that aid the implicit learning of an artificial grammar task.  Specifically, this 
research (Sallas, et al., 2006) found that participants who saw example “words” in the context of an 
animated diagram of the grammar performed more accurately on a test and were just as fast as 
participants who saw the “words” alone (in contrast to the Domangue, et al., 2004 study discussed in an 
earlier section).  It is important to note that it is not animation, per se, that improves learning in this task 
as the benefit is only conferred when combined with diagram information.   Instead improved performance 
appears to result from the provision of explicit information in a form that reduces the working memory load 
of participants while directing attention to important task information.  From the viewpoint of teaching, 
both studies suggest that experiential learning can be aided by the judicious use of information that points 
students in the right direction.     
 Our work also has relevance for more general strategies that are employed in the teaching of 
science.   In many of our research studies, “experiential” participants learn the task on their own after 
being given a general goal (e.g., “learn how to control the nuclear reactor so it stays at 6000”).   Given 
that these participants often learn the task quite well, one might surmise that trial-and-error is an efficient 
strategy for learning implicit tasks.   However, our work (e.g., Prattini, 2006) has documented that 
participants who are explicitly told to use a trial-and-error strategy do quite poorly.  Instead, it appears the 
nature of the task and the general goal lead participants to engage in a relatively systematic (somewhat 
explicit) exploration of the problem domain.   Trial-and-error participants, on the other hand, do not 
apparently learn enough from their exposure to examples to constitute sufficient coverage of the domain. 
The data from this and other studies, along with the research on hints noted above, suggests that a 
guided instruction approach to the teaching of experiential aspects of science knowledge may be superior 
to “purely” experiential approaches, which is directly related to our earlier point about synergy; for more 
general arguments on this issue pertaining to science instruction, see Klahr & Nigam (2004).    Although 
we believe a more guided instruction approach to be superior, we would emphasize that such guidance 
should be subtle rather than extensive.  For example, guidance could come in the form of brief 
instructions (e.g., pay attention to feature X and how it relates to feature Y), by choosing examples 
carefully, and by structuring the task to provide suitable feedback to students.   
 We believe that teaching skills requires teachers to be actively involved in teaching scientific 
concepts as well as actually using the knowledge doing science.  It also requires a willingness to not only 
tell students the rules (explicit conceptual knowledge) but how you actually do it.  Just telling the explicit 
rules hides the implicit side of science.  For example, the gold standard in psychological research is 
inferential statistics (ANOVAs, multiple regression, etc), that basically tell you which dots on your graph 
you can “trust” as being truly different.  This is a very explicit, analytic approach to interpreting data.  
However, one of us (Robert Mathews) likes to take a more holistic (and more implicit) look at the big 
picture of the data (e.g., look at a table of means before worrying about significant differences).  Often this 
approach leads to a different method of analyzing the data, or a change in experimental procedures for 
the next experiment.  This skill can be recommended to students but you cannot expect that students will 
immediately apply this strategy in ways that are equivalent to many years of experience.  Expertise takes 
time; knowledge integration takes time.  In addition to the suggestions we have offered above, we believe 
teachers can speed up the process by being willing to expose their deviations from standard (explicitly 
recommended) strategies.  Most of us are not even aware of our hidden implicit knowledge (the art of our 



science).  The path to discovering this knowledge lies in being actively involved in doing science and 
carefully observing your own implicit reactions as you do it. 
 
V Conclusion 
 
 Developing the ability to bring both conceptual and experiential aspects of science knowledge to 
bear on a problem is an important goal of science education.  We have argued throughout this chapter 
that these types of knowledge have different characteristics and can be usefully combined.  We also 
described the results of research that address the problem of knowledge integration, and the utility of 
having a powerful theoretical model (CLARION) in understanding the complex relationship between 
implicit and explicit processes.  We believe that this model and further research on this issue are central 
to understanding how humans learn complex skills and will continue to provide valuable lessons for 
education and training.  Finally, we suggest that science teachers attempting to integrate experiential and 
conceptual knowledge avoid ineffective strategies (such as concurrent reflection) and instead focus on 
strategies that allow students to systematically explore the examples of the domain under study while 
providing appropriate guidance and feedback. 
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Footnotes: 
                                                        
i Backpropagation is the term that describes a common method of “teaching” a computer network using 
feedback.  Starting from the first trial, the output of the network is compared to the target output.  The 
difference between the current and the target output is used to adjust the network settings to minimize 
this difference.  Over time, this leads the network to learn how to generate the target output.   
 
ii This method of training can be justified based on the fact that such associative learning can be easily 
performed from observing a given string and it can provide the needed implicit grammatical knowledge 
(as embedded in the network weights). 
 
iii When a completion of a partial string is found, and it is completely consistent with the rules available, 
the completed string is used as output. However, if a completion is impossible using given rules at the top 
level (due to the lack of applicable rules), the model attempts to complete as many positions as possible 
(it compares different partial completions and chooses the most complete one). Then, the bottom level is 
used. The partially completed string generated thus far by the top level is used as input to the bottom 
level to come up with a full string. Then, this (guessed) completion is used as output. 
 
iv If all the relevant rules are available and consistent with the candidate completion of the given partial 
string as generated by the bottom level, then that completion is used as output. If any of these rules are 
absent, an alternative rule will be used, which corrects the position that failed validation. 


