
Accessibility versus Action-Centeredness in the Representation of
Cognitive Skills

Ron Sun (rsun@cecs.missouri.edu)

Xi Zhang (xzf73@mizzou.edu)
Department of CECS, University of Missouri, Columbia, MO 65211, USA

Abstract

We believe that the distinction between procedural and
declarative knowledge unnecessarily confounds two
issues: action-centeredness and accessibility, and can be
made clearer through separating the two aspects. The
work presents an integrated model of skill learning that
takes into account both implicit and explicit processes
and both action-centered and non-action-centered
knowledge. We examine and simulate human data in
the Letter Counting task. The work shows how the data
may be captured using either the action-centered
knowledge alone or the combined action-centered and
non-action-centered knowledge. The results provide a
new perspective on skill learning.

Introduction
There have been many categories of knowledge being
proposed in cognitive skill acquisition. Among them,
one enduring (albeit somewhat controversial) distinction
is the distinction between procedural and declarative
knowledge (Anderson 1983, 1993). In Anderson (1983,
1993), procedural knowledge is represented in an
action-centered way (with production rules that can only
be used in one direction— from conditions to actions),
and declarative knowledge in a non-action-centered way
(i.e., with knowledge chunks that can be used in any
possible direction).

On the other hand, this distinction leads to another,
equally intriguing distinction that has been hotly
debated in the literature—the distinction between
implicit and explicit knowledge (Reber 1989, Seger
1994, Destrebecqz and Cleeremans 2001). In Anderson
(1983), declarative knowledge is assumed to be
accessible: Subjects can easily access, manipulate, and
report on such knowledge. Procedural knowledge is not:
It leads to actions without much explicit subjective
accessibility (Anderson 1993, Proctor and Dutta 1995,
Sun et al 2001). Thus, in Anderson (1983), the two
dichotomies are merged into one.

In ACT-R as described by Anderson and Lebiere
(1998), however, each individual piece of knowledge,
be it procedural or declarative, involves both implicit
(subsymbolic) representation and explicit (symbolic)
representation. Symbolic representation is used for
denoting semantic labels and structural components of
each concept, while subsymbolic representation is used
for expressing its activation and other numeric

measures. This view constitutes another perspective on
the relation between the two dichotomies.

According to the first view above, the difference in
action-centeredness seems the main factor in
distinguishing the two types of knowledge, while
accessibility a secondary factor (Anderson 1993). We
believe that this view unnecessarily confounds two
issues: action-centeredness and accessibility, and can
be made clearer by separating the two issues. We have
reason to believe that action-centeredness does not
necessarily go with inaccessibility (see, e.g., Sun et al
2001), and non-action-centeredness does not necessarily
go with accessibility either (see, e.g., Schacter 1987).
Thus, we need to be aware of these two separate
dimensions in theorizing about cognition.

The alternative view that each individual piece of
knowledge, either procedural or declarative, involves
both implicit and explicit processes is also problematic.
The framework begs the question of the appropriateness
of such close-coupling. The fact that each piece of
knowledge has an explicit part contradicts the
phenomenon that some knowledge may be completely
implicit (Lewicki et al 1987, Destrebecqz and
Cleeremans 2001). This contradiction raised the
question of whether a tight coupling or a rather separate
organization, for example, having these two types of
knowledge in separate subsystems (Sun 2002, Sun et
al 2001), makes better sense. At a minimum, more
alternatives need to be explored.

In this paper, as an alternative to the afore-mentioned
views, we propose the separation of the two
dichotomies—we treat them as orthogonal to each other
(Sun 2002). We separate procedural vs. declarative
knowledge based on representation. Procedural
knowledge is represented in an action-centered way: It
goes in only one direction—from condition to action.
Declarative knowledge is represented in a non-action-
centered way: It can go in any direction. Each of them
resides in a separate subsystem. In a similar fashion but
separately, implicitness/explicitness can also be
distinguished based on representation. Implicit
knowledge can be represented using distributed
representation, which is relatively inaccessible (Sun et
al 2001, Sun 2002), whereas explicit knowledge can be
represented using symbolic/localist representation,
which is relatively accessible. Implicit and explicit
knowledge thus reside in two different components,
respectively. Moreover, in this way, the two

Figure 1: The CLARION architecture.

dichotomies are completely orthogonal to each other.
That is, there are both implicit and explicit procedural
knowledge, and both implicit and explicit declarative
knowledge. In this work, we test this view using the
task of letter counting (Rabinowitz and Goldberg 1995
and Johnson 1998).

In the remainder of this paper, we first introduce the
idea of action-centered vs. non-action-centered
representation through a model, in the next section. In
the section following that, we describe some
simulations of the letter counting task. Discussions and
concluding remarks complete this paper.

The CLARION Model
CLARION is an integrative model with a dual
representational structure. It consists of two main
subsystems: the action-centered subsystem (ACS) and
the non-action-centered subsystem (NACS). Each
subsystem consists in turn of two levels: the top level
encodes explicit knowledge and the bottom level
encodes implicit knowledge. See Figure 1 for a sketch
of the model.

The Action-Centered Subsystem
Action decision making in the ACS is as follows:

1. Observe the current state x.
2. Compute in the bottom level (the IDN, or

Implicit Decision Network) the "value" of each
of the possible actions (ai's) in the current state
x: Q(x, a1), Q(x, a2), , Q(x, an).

3. Find out all the possible actions (b1 , b2 ,, bm
) at the top level (the ARN, or Action Rule
Network), based on the current state
information x (which goes up from the bottom
level) and the existing rules in place at the top
level.

4. Choose an appropriate action a, by
stochastically selecting the outcome of the top
level or the bottom level.

5. Perform the selected action a, and observe the
next state y.

6. Update the bottom level in accordance with Q-
learning (implemented within a back-
propagation network).

7. Update the top level using an appropriate
learning algorithm (not relevant to this
simulation).

8. Go back to Step 1.
In step 4, the selection probabilities are determined
based on the relative performance of the two levels.
That is, the two levels compete against each other.

The learning of implicit action-centered knowledge at
the bottom level can be done in a variety of ways
consistent with the nature of distributed representations.
In general, reinforcement learning can be used,
especially Q-learning implemented in backpropagation
networks. See Sun et al (2001) for details and cognitive
justifications.

Action-centered explicit knowledge at the top level is
encoded in the form of action rules. It can also be
learned in a variety of ways or be given externally (Sun
2002).

Rule utility measures the effectiveness of an action
rule in terms of cost and benefit:

*cosr
j j jU benefit v t= − (1)

where v is a parameter that balances the scales of cost
and benefit. The benefit of a rule is calculated based on
the positive match ratio— how many positive matches a
rule produces within the context of all the possible
matches by the rule (a positive match criterion needs to
be set). The cost of a rule is set based on the execution
time considerations. The utility of a rule is the
comparison of its benefit and its cost, as commonly
done.

The output from the top level is determined through a
competition of all the rules matching the current input,
the same way as the competition of the two levels. The
competition among rules is based on utility r

jU .
The base-level activation (BLA) of an action rule is

1
*

n
r d
j l

l
B c t−

=
= ∑ (2)

where tl is the lth recent encoding/use of the rule, and
the default values of the parameters are c = 2, d = 0.5.
This quantity specifies the odds of needing a particular
rule based on the history of a rule (Anderson 1993),
which decays gradually following a power law. It
represents priming effects on a rule resulting from prior
uses of that rule.

The Non-Action-Centered Subsystem
At the bottom level of the non-action-centered
subsystem, an "associative memory" network (AMN for
short) encodes non-action-centered implicit knowledge.
Since our experiments in this work do not involve this
component, we will not get into the details.

At the top level of the non-action-centered subsystem,
a general knowledge network (GKN) encodes explicit,
non-action-centered knowledge (cf. Sun 1995). In this

network, chunks are encoded through specifying
attribute values. Links between chunks encode
associations between pairs of chunks.

The basic form of a chunk is as follows: chunk-idi :
(dim

1i , val
1i)(dim

2i , val
2i)...... (dim

ni
, val

ni
) where

dim denotes a particular state/output dimension, and val
specifies its corresponding value. A node is set up in the
GKN to represent a chunk. The node connects to its
corresponding features in the bottom level (see Sun
1995 for further details).

Each chunk has a base-level activation (BLA), similar
to what was described earlier regarding rules. It
represents priming effects on a chunk resulting from
prior uses of that chunk.

Response Times
The total response time by an agent is the sum of its
decision time, perceptual time, and actuation (motor)
time:

RTBL = PTBL + DTBL + ATBL
RTTL = PTTL + DTTL + ATTL

where RT is the total response time, PT is the perceptual
time, AT is the motor action time, and DT is the
decision time. RTs are determined separately for each
level. Whichever level is selected decides the overall
RT (which is either RTBL or RTTL). Normally, the RT of
the bottom level is shorter than that of the top level. RT
is partially determined by the history of use of rules and
chunks (priming as represented by BLAs). See Sun
(2002) for detailed justifications of these calculations.

Experiments

The Letter Counting Task
The setting of the letter counting task was as follows
(Rabinowitz and Goldberg 1995, Johnson 1998):
Subjects were asked to solve alphabetic arithmetic
problems of the forms: letter1 + number = letter2 or
letter1 - number = letter2, where letter2 is number
positions up or down from letter1, depending on
whether + or - was used. They were given letter1
and number, and asked to produce letter2.

In experiment 1, during the training phase, one group
of subjects (the consistent group) received 36 blocks of
training, in which each block consisted of the same 12
addition problems. Another group (the varied group)
received 6 blocks of training, in which each block
consisted of the same 72 addition problems. While
both groups received 432 trials, the consistent group
practiced on each problem 36 times, but the varied
group only 6 times. The addends ranged from 1 to 6.
The consistent group experienced 2 occurrences of each
addend, while the varied group experienced 12
occurrences of each addend. In the transfer phase, each
group received 12 new addition problems, repeated 3
times.

Figure 2: Experiment 1 of the letter counting task.

Figure 3: Experiment 2 of the letter counting task.

The findings were that, at the end of training, the
consistent group performed far better than the varied
group. However, during transfer, the consistent group
performed worse than the varied group. The varied
group showed perfect transfer, while the consistent
group showed considerable slow-down. See Figures 2.
(Note that only correct responses were used in the
analysis; the same below.)

In experiment 2, the training phase was identical
to that of experiment 1. However, during the
transfer phase, both groups received 12 subtraction
(not addition) problems, which were the reverse of
the original addition problems, repeated 3 times. The
findings were that, in contrast to experiment 1, during
transfer, the consistent group actually performed better
than the varied group. Both groups performed worse
than their corresponding performance at the end of
training, but the varied group showed worse
performance than the consistent group. See Figure 3.

Simulation 1
Model Setup. The simulation was based on "top-down"
learning: that is, we encoded a set of a priori rules for
capturing prior knowledge concerning counting letters
at the top level of the ACS. Then, on the basis of these
rules, performance was carried out and implicit learning
at the bottom level of the ACS took place. The set of
rules included the following:

If goal=addition-counting, start-letter=x, number=n,
then starting with x, repeat n times: count-up

Figure 4: The learning curves of the letter counting
task.

If goal=subtraction-counting, start-letter=x, num-
ber=n, then starting with x, repeat n times:
count-down
If goal=addition-counting, start-letter=x, number=n,
then retrieve chunks with (dim1 = x, dim2 = +, dim3 =
n, dim4 =?) and report dim4.
If goal=addition-counting, start-letter=x, number=n,
then retrieve chunks with (dim1 = ?, dim2 = -, dim3 =
n, dim4 = x) and report dim1 (retrieve and reverse).
If goal=subtraction-counting, start-letter=x,
number=n, then retrieve chunks with (dim1 = x, dim2
= -, dim3 = n, dim4 =?) and report dim4.
If goal=subtraction-counting, start-letter=x,
number=n, then retrieve chunks with (dim1 =?, dim2
= +, dim3 = n, dim4 = x) and report dim1 (retrieve
and reverse).

In these rules, "?" represented "don't care" conditions.
Rules competed based on their utility. In calculating

the utility (i.e., the cost and benefit of each rule), the
benefit was set equal to the positive match ratio of a rule
(the default function for benefit). The rule condition
must match the current state to be counted as a "match".
A "positive match" was further determined by the
outcome of the matching rule being correct.

Three inputs were provided: starting letter, arithmetic
operator, and number. In addition, the goal from the
goal structure was also input to both levels. There were
26 possible output values.

One IDN network was involved. Its output indicated
the (guessed) target letter. There were 35 input units (26
letters + 6 numbers + 2 signs + 1 goal), 30 hidden units,
and 26 output units.

The NACS was used for storing and retrieving
experienced instances (in the form of chunks). In the
NACS, each question and answer pair encountered was
encoded as a chunk.

A retrieval rule from the ACS triggered all the chunks
that overlapped with the retrieval cue (as indicated by
the retrieval rule). Actual retrieval was limited to one
chunk at each step. All triggered chunks (those partially
or fully matching the retrieval cue) competed to be the
one retrieved, based on chunk strengths.

The response time for chunk retrieval was determined
by both the BLA of the chunk retrieved (in the NACS)
and the BLA of the retrieval action rule applied (in the
ACS). The total response time of chunk retrieval was
the sum of the perceptual time (PTTL), the decision time
of the retrieval rule (in part determined by the BLA of
the action rule: t2 + t0 / BLA(rule)), the retrieval time in
the NACS (in part determined by the BLA of the chunk
retrieved (t1 / BLA(chunk)), and the verbal answer time.

Simulation Results. First of all, during the training
phase of experiment 1, the simulation matched the
response time difference between the consistent and the
varied group. See the simulation data in Figure 5, which
is to be compared with Figure 2. The simulated
consistent group had a lower response time because it
had more practice on a smaller number of instances,
which led to the better performing IDN (the bottom
level in the ACS), as well as better performing instance
retrieval from the NACS. Because they were better
performing, the IDN and the NACS were more likely to
be used in determining the overall outcome of the
simulated consistent group, due to the competition
among different components. Because these two
components had lower response times than other
components, 1 a lower overall response time resulted for
the simulated consistent group. The difference was
statistically significant (F(98) = 291.191, p < 0.0001).

CLARION also matched the transfer performance
difference between the two groups in experiment 1, as
shown in Figure 5. During the transfer phase of
experiment 1, the performance of the simulated
consistent group was worsened, compared with its
performance at the end of training (F(98) = 537.010, p
< 0.0001); the transfer performance of the simulated
consistent group was in fact worse than that of the
simulated varied group (F(98) = 41.672, p < 0.0001).
This is because the simulated consistent group relied
more on the IDN and the NACS during training and
therefore, the BLAs of its counting rules were lower. As
a result, it took more time to apply the counting rules
during transfer, which it had to apply, due to the fact
that it had to deal with a different set of instances during
transfer. (Note that this explanation was not offered by
the ACT-R simulation; see Johnson 1998) The
performance of the simulated varied group hardly
changed, compared with its performance at the end of
training (F(98) = 2.534, p = 0.1147), because it relied
mostly on the counting rules at the top level during
training, which was equally applicable to both training
and transfer. As a result, its counting rules had higher
BLAs, and therefore it performed better than the
simulated consistent group during transfer. The
difference was statistically significant (F(98) = 41.672,
p < 0.0001).

1 It is either inherently so, as in the case of the IDN, or due to
frequent use (higher BLAs), as in the case of the NACS.

Figure 5: Simulation 1 of experiment 1 of the letter
counting task.

As indicated by Figure 6, which is to be compared to

Figure 3, this simulation also captured accurately the
human data of experiment 2. During transfer in
experiment 2, due to the change in the task setting
(counting down as opposed to counting up), the
practiced rule for counting up was no longer useful.
Therefore, both simulated groups had to use a new
counting rule (for counting down), which had only the
initial BLA in both cases. Similarly, both simulated
groups had to use a new instance retrieval rule (for
reverse retrieval), which also had only the initial BLA
in both cases. Both simulated groups performed worse
than at the end of training for the above reason (F(98) =
56.305, p < 0.0001 and F(98) = 1383.894, p < 0.0001
for the simulated consistent and the simulated varied
group respectively). (Note that this explanation was not
offered by the ACT-R simulation, see Johnson 1998.)

Moreover, this simulation captured the fact that the
varied group performed worse than the consistent group
during transfer (Figure 6). This difference was
explained by the fact that the simulated consistent group
had more BLAs associated with chunks than the
simulated varied group, because the simulated
consistent group had more practice with these chunks.
These chunks were used in "reverse retrieval" during
the transfer phase of experiment 2, because of the
reverse relationship between the training and the
transfer instances used in this experiment. Therefore,
the simulated consistent group performed better than the
simulated varied group in this phase (F(98) = 41.121, p
< 0.0001).

The learning curves of the training phase in this
simulation are shown in Figure 7. They should be
compared to Figure 4.

Simulation 2
Model Setup. In this alternative simulation, only the
ACS was used. Therefore, all the rules and other
mechanisms related to the NACS were removed.

Simulation Results. The simulation captured the
response time difference of the training phase of
experiment 1. In the simulation of human performance
of the training phase (Figure 2), the simulated consistent

Figure 6: Simulation 1 of experiment 2 of the letter
counting task.

Figure 7: The learning curves of simulation 1 of the

letter counting task.

group had a lower response time (Figure 8), the same as
in the human data. The difference between the two
simulated groups was statistically significant (F(98) =
61.056, p < 0.0001).

Figure 8: Simulation 2 of experiment 1 of the letter
counting task.

CLARION also matched the transfer performance

difference of experiment 1. As in the human data
(shown in Figure 2), during the transfer phase of
experiment 1, the performance of the simulated
consistent group was worsened compared with its
performance at the end of training (F(98) = 103.781, p <
0.0001), and in fact it was worse than that of the
simulated varied group (F(98) = 35.452, p < 0.0001).

However, in experiment 2, although the transfer
performance of both simulated groups was worse
compared with their respective performance at the end

Figure 9: Simulation 2 of experiment 2.

of training (F(98) = 2781.077, p < 0:0001 and F(98) =
5522.671, p < 0.0001 for the simulated consistent and
the simulated varied group respectively), the simulation
failed to explain the fact that the varied group
performed worse than the consistent group in transfer,
due to the lack of the instance retrieval mechanism as in
the previous simulation.

Discussions
CLARION provides some interesting interpretations of
the human data. For example, it attributes the
performance difference at the end of training between
the consistent and the varied group to the difference
between relying on implicit knowledge and relying on
explicit rules. Beside incorporating some ACT-R
interpretations of this task, CLARION goes beyond
existing ACT-R (and other) simulations in providing
interpretations that other models do not provide. The
CLARION simulations are far more accurate than the
ACT-R simulations (see Johnson 1998).

This good match between the simulation and the
human data was obtained under the same set of
parameters for all the groups and all the conditions
involved. The only difference was that of stimuli, which
did not require any change in model parameters for
simulating different groups. Considering the fact that
there were a total of three different conditions (training
and transfer in experiment 1, and transfer in experiment
2), with two groups in each, it was not a trivial matter to
obtain a good match using only one set of parameters.
The match shows, to some extent, the cognitive validity
of CLARION.

Comparing the two simulations, we see that, although
the ACS alone could capture the data in this task to a
certain extent, the use of both the ACS and the NACS
led to better capturing of data. Thus, to some extent, the
simulation of the letter counting task indicates the need
of having both the ACS and the NACS.

Concluding Remarks
This work shows that it is possible and useful to
separate the two dichotomies: implicit vs. explicit
knowledge and action-centered vs. non-action-centered
knowledge. We illustrate this separation through a

cognitive architecture CLARION, which succeeded
previously in simulating a variety of cognitive data (see
Sun et al 2001, Sun 2002). This separation leads to new
possibilities of interpreting data and new ways of
understanding cognitive skill acquisition.

Acknowledgements

 This work is supported in part by Army Research
Institute contract DASW01-00-K-0012.

References
J. R. Anderson, (1993). Rules of the Mind. Lawrence

Erlbaum Associates, Hillsdale, NJ.
J. Anderson and C. Lebiere, (1998). The Atomic

Components of Thought, Lawrence Erlbaum
Associates, Mahwah, NJ.

A. Destrebecqz and A. Cleeremans, (2001). Can
sequence learning be implicit?, New evidence with
the process dissociation procedure. Psychonomic
Bulletin and Review, 8, 2, 343-350.

T. Johnson, (1998). Acquisition and transfer of
declarative and procedural knowledge. European
Conference on Cognitive Modeling, pp.15-22.
Nottingham University Press, Nottingham, UK.

P. Lewicki, M. Czyzewska, and H. Hoffman, (1987).
Unconscious acquisition of complex procedural
knowledge. Journal of Experimental Psychology:
Learning, Memory and Cognition. 13 (4), 523-530.

R. Proctor and A. Dutta, (1995). Skill Acquisition and
Human Performance. Sage Publications, Thousand
Oks, CA.

M. Rabinowitz and N. Goldberg, (1995). Evaluating the
structure-process hypothesis. In: F. Weinert and W.
Schneider, (eds.) Memory Performance and
Competencies. Lawrence Erlbaum, Hillsdale, NJ.

A. Reber, (1989). Implicit learning and tacit knowledge.
Journal of Experimental Psychology: General. 118
(3), 219-235.

D. Schacter, (1987). Implicit memory: History and
current status. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 13, 501-518.

C. Seger, (1994). Implicit learning. Psychological
Bulletin. 115 (2), 163-196.

R. Sun, (1995). Robust reasoning: integrating rule-
based and similarity-based reasoning. Artificial
Intelligence. 75, 2. 241-296.

R. Sun, (2002). Duality of the Mind. Lawrence Erlbaum
Associates, Mahwah,NJ.

R. Sun, E. Merrill, and T. Peterson, (2001). From
implicit skills to explicit knowledge: a bottom-up
model of skill learning. Cognitive Science, 2001.

