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Abstract 

We believe that the distinction between procedural and 
declarative knowledge unnecessarily confounds two 
issues:  action-centeredness and accessibility, and can be 
made clearer through separating the two aspects. The 
work presents an integrated model of skill learning that 
takes into account both implicit and explicit processes 
and both action-centered and non-action-centered 
knowledge. We examine and simulate human data in        
the Letter Counting task.  The work shows how the data 
may be captured using either the action-centered 
knowledge alone or the combined action-centered and 
non-action-centered knowledge. The results provide a 
new perspective on skill learning.  

Introduction 
There have been many categories of knowledge being 
proposed in cognitive skill acquisition. Among them, 
one enduring (albeit somewhat controversial) distinction 
is the distinction between procedural and declarative 
knowledge (Anderson 1983, 1993). In Anderson (1983, 
1993), procedural knowledge is represented in an 
action-centered way (with production rules that can only 
be used in one direction— from conditions to actions), 
and declarative knowledge in a non-action-centered way 
(i.e., with knowledge chunks that can be used in any 
possible direction).  

On the other hand, this distinction leads to another, 
equally intriguing distinction that has been hotly 
debated in the literature—the distinction between 
implicit and explicit knowledge (Reber 1989, Seger 
1994, Destrebecqz and Cleeremans 2001). In Anderson 
(1983), declarative knowledge is assumed to be 
accessible: Subjects can easily access, manipulate, and 
report on such knowledge. Procedural knowledge is not:  
It leads to actions without much explicit subjective 
accessibility (Anderson 1993, Proctor and Dutta 1995, 
Sun et al 2001). Thus, in Anderson (1983), the two 
dichotomies are merged into one. 

In ACT-R as described by Anderson and Lebiere 
(1998), however, each individual piece of knowledge, 
be it procedural or declarative, involves both implicit 
(subsymbolic) representation and explicit (symbolic) 
representation.  Symbolic representation is used for 
denoting semantic labels and structural components of 
each concept, while subsymbolic representation is used 
for expressing its activation and other numeric 

measures. This view constitutes another perspective on 
the relation between the two dichotomies. 

According to the first view above, the difference in 
action-centeredness seems the main factor in 
distinguishing the two types of knowledge, while 
accessibility a secondary factor (Anderson 1993). We 
believe that this view unnecessarily confounds two 
issues:  action-centeredness and accessibility, and can 
be made clearer by separating the two issues.  We have 
reason to believe that action-centeredness does not 
necessarily go with inaccessibility (see, e.g., Sun et al 
2001), and non-action-centeredness does not necessarily 
go with accessibility either (see, e.g., Schacter 1987).  
Thus, we need to be aware of these two separate 
dimensions in theorizing about cognition. 

The alternative view that each individual piece of 
knowledge, either procedural or declarative, involves 
both implicit and explicit processes is also problematic. 
The framework begs the question of the appropriateness 
of such close-coupling. The fact that each piece of 
knowledge has an explicit part contradicts the 
phenomenon that some knowledge may be completely 
implicit (Lewicki et al 1987, Destrebecqz and 
Cleeremans 2001).  This contradiction raised the 
question of whether a tight coupling or a rather separate 
organization, for example, having  these  two  types  of  
knowledge  in  separate  subsystems  (Sun 2002, Sun et 
al 2001),  makes better sense.  At a minimum, more 
alternatives need to be explored. 

In this paper, as an alternative to the afore-mentioned 
views, we propose the separation of the two 
dichotomies—we treat them as orthogonal to each other 
(Sun 2002). We separate procedural vs. declarative 
knowledge based on representation. Procedural 
knowledge is represented in an action-centered way: It 
goes in only one direction—from condition to action. 
Declarative knowledge is represented in a non-action-
centered way: It can go in any direction. Each of them 
resides in a separate subsystem. In a similar fashion but 
separately, implicitness/explicitness can also be 
distinguished based on representation. Implicit 
knowledge can be represented using distributed 
representation, which is relatively inaccessible (Sun et 
al 2001, Sun 2002), whereas explicit knowledge can be 
represented using symbolic/localist representation, 
which is relatively accessible.  Implicit and explicit 
knowledge thus reside in two different components, 
respectively.     Moreover,    in    this    way,    the    two 



 
 
 
 
 
 
 
 

 
 

Figure 1: The CLARION architecture. 
 

dichotomies are completely orthogonal to each other. 
That is, there are both implicit and explicit procedural 
knowledge, and both implicit and explicit declarative 
knowledge. In this work, we test this view using the 
task of letter counting (Rabinowitz and Goldberg 1995 
and Johnson 1998). 

In the remainder of this paper, we first introduce the 
idea of action-centered vs. non-action-centered 
representation through a model, in the next section.  In 
the section following that, we describe some 
simulations of the letter counting task. Discussions and 
concluding remarks complete this paper. 

The CLARION Model 
CLARION is an integrative model with a dual 
representational structure. It consists of two main 
subsystems: the action-centered subsystem (ACS) and 
the non-action-centered subsystem (NACS). Each 
subsystem consists in turn of two levels: the top level 
encodes explicit knowledge and the bottom level 
encodes implicit knowledge.  See Figure 1 for a sketch 
of the model. 

The Action-Centered Subsystem 
Action decision making in the ACS is as follows:  
 

1. Observe the current state x. 
2. Compute in the bottom level (the IDN, or 

Implicit Decision Network) the "value" of each 
of the possible actions (ai's) in the current state 
x: Q(x, a1), Q(x, a2),  ......, Q(x, an). 

3. Find out all the possible actions (b1 , b2 , ...., bm  
) at the top level (the ARN, or Action Rule 
Network), based on the current state 
information x (which goes up from  the  bottom  
level)  and  the existing rules in place at the top 
level. 

4. Choose an appropriate action a, by 
stochastically selecting the outcome of the top 
level or the bottom level. 

5. Perform the selected action a, and observe the 
next state y. 

6. Update the bottom level in accordance with Q-
learning (implemented within a back-
propagation network). 

7. Update the top level using an appropriate 
learning algorithm (not relevant to this 
simulation). 

8. Go back to Step 1. 
In step 4, the selection probabilities are determined 
based on the relative performance of the two levels.  
That is, the two levels compete against each other. 

The learning of implicit action-centered knowledge at 
the bottom level can be done in a variety of ways 
consistent with the nature of distributed representations. 
In general, reinforcement learning can be used, 
especially Q-learning implemented in backpropagation 
networks.  See Sun et al (2001) for details and cognitive 
justifications. 

Action-centered explicit knowledge at the top level is 
encoded in the form of action rules. It can also be 
learned in a variety of ways or be given externally (Sun 
2002). 

Rule utility measures the effectiveness of an action 
rule in terms of cost and benefit: 
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where v is a parameter that balances the scales of cost 
and benefit. The benefit of a rule is calculated based on 
the positive match ratio— how many positive matches a 
rule produces within the context of all the possible 
matches by the rule (a positive match criterion needs to 
be set).  The cost of a rule is set based on the execution 
time considerations. The utility of a rule is the 
comparison of its benefit and its cost, as commonly 
done. 

The output from the top level is determined through a 
competition of all the rules matching the current input, 
the same way as the competition of the two levels. The 
competition among rules is based on utility r

jU . 
The base-level activation (BLA) of an action rule is 
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where tl is the lth recent encoding/use of the rule, and  
the default values of the parameters are c = 2, d = 0.5.  
This quantity specifies the odds of needing a particular 
rule based on the history of a rule (Anderson 1993), 
which decays gradually following a power law. It 
represents priming effects on a rule resulting from prior 
uses of that rule. 

The Non-Action-Centered Subsystem 
At the bottom level of the non-action-centered 
subsystem, an "associative memory" network (AMN for 
short) encodes non-action-centered implicit knowledge. 
Since our experiments in this work do not involve this 
component, we will not get into the details. 

At the top level of the non-action-centered subsystem, 
a general knowledge network (GKN) encodes explicit, 
non-action-centered knowledge (cf. Sun 1995). In this 



network, chunks are encoded through specifying 
attribute values. Links between chunks encode 
associations between pairs of chunks. 

The basic form of a chunk is as follows:  chunk-idi : 
(dim

1i , val
1i )(dim

2i , val
2i )...... (dim

ni
, val

ni
) where 

dim denotes a particular state/output dimension, and val 
specifies its corresponding value. A node is set up in the 
GKN to represent a chunk.  The node connects to its 
corresponding features in the bottom level (see Sun 
1995 for further details). 

Each chunk has a base-level activation (BLA), similar 
to what was described earlier regarding rules. It 
represents priming effects on a chunk resulting from 
prior uses of that chunk. 

Response Times 
The total response time by an agent is the sum of its 
decision time, perceptual time, and actuation (motor) 
time: 

RTBL = PTBL + DTBL + ATBL 
RTTL = PTTL + DTTL + ATTL 

where RT is the total response time, PT is the perceptual 
time, AT is the motor action time, and DT is the  
decision time. RTs are determined separately for each 
level. Whichever level is selected decides the overall 
RT (which is either RTBL or RTTL). Normally, the RT of 
the bottom level is shorter than that of the top level.  RT 
is partially determined by the history of use of rules and 
chunks (priming as represented by BLAs). See Sun 
(2002) for detailed justifications of these calculations. 

Experiments 

The Letter Counting Task 
The setting of the letter counting task was as follows 
(Rabinowitz and Goldberg 1995, Johnson 1998):  
Subjects were asked to solve alphabetic arithmetic 
problems of the forms: letter1 + number = letter2 or 
letter1 - number = letter2, where  letter2  is  number  
positions  up  or  down  from  letter1,  depending  on 
whether  +  or  -  was  used.   They were given letter1 
and number, and asked to produce letter2. 

In experiment 1, during the training phase, one group 
of subjects (the consistent group) received 36 blocks of 
training, in which each block consisted of the same 12 
addition problems.  Another group (the varied group) 
received 6 blocks of  training,  in  which  each  block  
consisted  of  the  same  72  addition  problems. While 
both groups received 432 trials, the consistent group 
practiced on each problem 36 times, but the varied 
group only 6 times.  The addends ranged from 1 to 6.  
The consistent group experienced 2 occurrences of each 
addend, while the varied group experienced 12 
occurrences of each addend. In the transfer phase, each 
group received 12 new addition problems, repeated 3 
times. 

 
          
Figure 2: Experiment 1 of the letter counting task. 

 

 
 

Figure 3: Experiment 2 of the letter counting task. 
 

The findings were that, at the end of training, the 
consistent group performed far better than the varied 
group.  However, during transfer, the consistent group 
performed worse than the varied group.  The varied 
group showed perfect transfer, while the consistent 
group showed considerable slow-down.  See Figures 2. 
(Note that only correct responses were used in the 
analysis; the same below.) 

In  experiment  2,  the  training  phase  was  identical  
to  that  of  experiment  1. However,  during  the  
transfer  phase,  both  groups  received  12  subtraction  
(not addition)  problems,  which  were  the  reverse  of  
the  original  addition  problems, repeated 3 times.  The 
findings were that, in contrast to experiment 1, during 
transfer, the consistent group actually performed better 
than the varied group. Both groups performed worse 
than their corresponding performance at the end of 
training, but the varied group showed worse 
performance than the consistent group.  See Figure 3. 

Simulation 1 
Model Setup. The simulation was based on "top-down" 
learning:  that is, we encoded a set of a priori rules for 
capturing prior knowledge concerning counting letters 
at the top level of the ACS. Then, on the basis of these 
rules, performance was carried out and implicit learning 
at the bottom level of the ACS took place. The set of 
rules included the following: 

If goal=addition-counting, start-letter=x, number=n, 
then starting with x, repeat n times:  count-up 

 



 
 

Figure 4: The learning curves of the letter counting 
task. 

 
If goal=subtraction-counting, start-letter=x, num-
ber=n,   then   starting   with  x,   repeat    n   times:  
count-down 
If goal=addition-counting, start-letter=x, number=n, 
then retrieve chunks with (dim1 = x, dim2 = +, dim3 = 
n, dim4 =?) and report dim4. 
If goal=addition-counting, start-letter=x, number=n, 
then retrieve chunks with (dim1 = ?, dim2 = -, dim3 = 
n, dim4 = x) and report dim1 (retrieve and reverse). 
If goal=subtraction-counting, start-letter=x, 
number=n, then retrieve chunks with (dim1 = x, dim2 
= -, dim3 = n, dim4 =?) and report dim4. 
If goal=subtraction-counting, start-letter=x, 
number=n, then retrieve chunks with (dim1 =?, dim2 
= +, dim3 = n, dim4 = x) and report dim1  (retrieve 
and reverse). 

In these rules, "?" represented "don't care" conditions. 
Rules competed based on their utility.  In calculating 

the utility (i.e., the cost and benefit of each rule), the 
benefit was set equal to the positive match ratio of a rule 
(the default function for benefit). The rule condition 
must match the current state to be counted as a "match".  
A "positive match" was further determined by the 
outcome of the matching rule being correct. 

Three inputs were provided:  starting letter, arithmetic 
operator, and number.   In addition, the goal from the 
goal structure was also input to both levels. There were 
26 possible output values. 

One IDN network was involved. Its output indicated 
the (guessed) target letter. There were 35 input units (26 
letters + 6 numbers + 2 signs + 1 goal), 30 hidden units, 
and 26 output units. 

The NACS was used for storing and retrieving 
experienced instances (in the form of chunks). In the 
NACS, each question and answer pair encountered was 
encoded as a chunk. 

A retrieval rule from the ACS triggered all the chunks 
that overlapped with the retrieval cue (as indicated by 
the retrieval rule). Actual retrieval was limited to one 
chunk at each step. All triggered chunks (those partially 
or fully matching the retrieval cue) competed to be the 
one retrieved, based on chunk strengths.  

The response time for chunk retrieval was determined 
by both the BLA of the chunk retrieved (in the NACS) 
and the BLA of the retrieval action rule applied (in the 
ACS). The total response time of chunk retrieval was 
the sum of the perceptual time (PTTL), the decision time 
of the retrieval rule (in part determined by the BLA of 
the action rule: t2 + t0 / BLA(rule)), the retrieval time in  
the NACS (in part determined by the BLA of the chunk  
retrieved (t1 / BLA(chunk)), and the verbal answer time. 

Simulation Results. First of all, during the training 
phase of experiment 1, the simulation matched the 
response time difference between the consistent and the 
varied group. See the simulation data in Figure 5, which 
is to be compared with Figure 2. The simulated 
consistent group had a lower response time  because  it  
had  more practice on a smaller number of instances,  
which led to the better performing IDN (the bottom  
level in the ACS), as well  as better performing instance 
retrieval from the NACS. Because they were better 
performing, the IDN and the NACS were more likely to 
be used in determining the overall outcome of the 
simulated consistent group, due to the competition 
among different components. Because these two 
components had lower response times than other 
components, 1 a lower overall response time resulted for 
the simulated consistent group.  The difference was 
statistically significant (F(98) = 291.191, p < 0.0001). 

CLARION also matched the transfer performance 
difference between the two groups in experiment 1, as 
shown in Figure 5. During the transfer phase of 
experiment 1, the performance of the simulated 
consistent group was worsened, compared with its 
performance at the end of training (F(98) = 537.010, p  
< 0.0001); the transfer performance of the simulated 
consistent group was in fact worse than that of the  
simulated varied group (F(98) = 41.672, p < 0.0001). 
This is because the simulated consistent group relied 
more on the IDN and the NACS during training and 
therefore, the BLAs of its counting rules were lower. As 
a result, it took more time to apply the counting rules 
during transfer, which it had to apply, due to the fact 
that it had to deal with a different set of instances during 
transfer. (Note that this explanation was not offered by 
the ACT-R simulation; see Johnson 1998) The 
performance of the simulated varied group hardly 
changed, compared with its performance at the end of 
training (F(98) = 2.534, p = 0.1147), because it relied 
mostly on the counting rules at the top level during 
training, which was equally applicable to both training 
and transfer. As a result, its counting rules had higher 
BLAs, and therefore it performed better than the 
simulated   consistent    group    during    transfer.    The 
difference was statistically significant (F(98) = 41.672, 
p < 0.0001). 
                                                        
1 It is either inherently so, as in the case of the IDN, or due to 
frequent use (higher BLAs), as in the case of the NACS. 



 
 

Figure 5: Simulation 1 of experiment 1 of the letter 
counting task. 

 
As indicated by Figure 6, which is to be compared to 

Figure 3, this simulation also captured accurately the 
human data of experiment 2. During transfer in 
experiment 2, due to the change in the task setting 
(counting down as opposed to counting up), the 
practiced rule for counting up was no longer useful.  
Therefore, both simulated groups had to use a new 
counting rule (for counting down), which had only the 
initial BLA in both cases. Similarly, both simulated 
groups had to use a new instance retrieval rule (for 
reverse retrieval), which also had only the initial BLA 
in both cases. Both simulated groups performed worse 
than at the end of training for the above reason (F(98) = 
56.305, p < 0.0001 and F(98) = 1383.894, p < 0.0001  
for the simulated consistent and the simulated varied 
group respectively). (Note that this explanation was not 
offered by the ACT-R simulation, see Johnson 1998.) 

Moreover, this simulation captured the fact that the 
varied group performed worse than the consistent group 
during transfer (Figure 6). This difference was 
explained by the fact that the simulated consistent group 
had more BLAs associated with chunks than the 
simulated varied group, because the simulated 
consistent group had more practice with these chunks.  
These chunks were used in "reverse retrieval" during 
the transfer phase of experiment 2, because of the 
reverse relationship between the training and the 
transfer instances used in this experiment. Therefore, 
the simulated consistent group performed better than the 
simulated varied group in this phase (F(98) = 41.121, p 
< 0.0001). 

The learning curves of the training phase in this 
simulation are shown in Figure 7. They should be 
compared to Figure 4. 

Simulation 2 
Model Setup. In this alternative simulation, only the 
ACS was used. Therefore, all the rules and other 
mechanisms related to the NACS were removed. 

Simulation Results. The simulation captured the 
response time difference of the training phase of 
experiment 1. In the simulation of human performance 
of the training phase (Figure 2), the simulated consistent 

 
 

Figure 6: Simulation 1 of experiment 2 of the letter 
counting task. 

 
 

 
Figure 7: The learning curves of simulation 1 of the 

letter counting task. 
 

group had a lower response time (Figure 8), the same as 
in the human data. The difference between the two 
simulated groups was statistically significant (F(98) = 
61.056, p < 0.0001). 
 

 
 

Figure 8: Simulation 2 of experiment 1 of the letter 
counting task. 

 
CLARION also matched the transfer performance 

difference of experiment 1. As in the human data 
(shown in Figure 2), during the transfer phase of 
experiment 1, the performance of the simulated 
consistent group was worsened compared with its 
performance at the end of training (F(98) = 103.781, p < 
0.0001), and in fact it was worse than that of the 
simulated varied group (F(98)  = 35.452, p < 0.0001).   

However, in experiment 2, although the transfer 
performance of both simulated   groups   was   worse 
compared with their  respective  performance  at the end 



 
 

Figure 9: Simulation 2 of experiment 2.  
 

of training (F(98) = 2781.077, p < 0:0001 and F(98) = 
5522.671, p < 0.0001  for  the  simulated  consistent and 
the simulated varied group respectively), the simulation 
failed to explain the fact that the varied group 
performed worse than the consistent group in transfer, 
due to the lack of the instance retrieval mechanism as in 
the previous simulation. 

Discussions 
CLARION provides some interesting interpretations of 
the human data. For example, it attributes the 
performance difference at the end of training between 
the consistent and the varied group to the difference 
between relying on implicit knowledge and relying on 
explicit rules. Beside incorporating some ACT-R 
interpretations of this task, CLARION goes beyond 
existing ACT-R (and other) simulations in providing 
interpretations that other models do not provide. The 
CLARION simulations are far more accurate than the 
ACT-R simulations (see Johnson 1998). 

This good match between the simulation and the 
human data was obtained under the same set of 
parameters for all the groups and all the conditions 
involved. The only difference was that of stimuli, which 
did not require any change in model parameters for 
simulating different groups. Considering the fact that 
there were a total of three different conditions (training 
and transfer in experiment 1, and transfer in experiment 
2), with two groups in each, it was not a trivial matter to 
obtain a good match using only one set of parameters. 
The match shows, to some extent, the cognitive validity 
of CLARION. 

Comparing the two simulations, we see that, although 
the ACS alone could capture the data in this task to a 
certain extent, the use of both the ACS and the NACS 
led to better capturing of data.  Thus, to some extent, the 
simulation of the letter counting task indicates the need 
of having both the ACS and the NACS. 

Concluding Remarks 
This work shows that it is possible and useful to 
separate the two dichotomies: implicit vs. explicit 
knowledge and action-centered vs. non-action-centered 
knowledge. We illustrate this separation through a 

cognitive architecture CLARION, which succeeded 
previously in simulating a variety of cognitive data (see 
Sun et al 2001, Sun 2002). This separation leads to new 
possibilities of interpreting data and new ways of 
understanding cognitive skill acquisition. 
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